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The following type of problem arises in practice: in 2 node-weighted
graph G, find a minimum weight node set that satisfies certain conditions
and, in addition, induces a perfectly matchable subgraph of G. This has led
us to study the convex hull of incidence vectors of node sets that induce
perfectly matchable subgraphs of a graph G, which we call the perfectly
matchable subgraph polytope of G. For the case when G is bipartite, we
give a linear characterization of this polytope, i.e., specify a system of
linear inequalities whose basic solutions are the incidence vectors of
perfectly matchable node sets of G. We derive this result by three different
approaches, using linear programming duality, projection, and lattice
polyhedra, respectively. The projection approach is used here for the first
time as a proof method in polyhedral combinatorics, and seems to have many
similar applications Finally, we completely characterize the facets of
our polytope, i.e., Wi separate the essential inequalities of our linear

defining system from the redundant ones. -




THE PERFECTLY MATCHABLE SUBGRAPH POLYTOPE

OF A BIPARTITE GRAPH

by
Egon Balas and William Pulleyblank

1. Introduction
Given a graph G = (V,E), it is often of interest to identify those
node sets of G that are perfectly matchable, i.e., those S<V such that
< 8§ > , the subgraph of G induced by S, has a perfect matching. We call
the convex hull of the incidence vectors of perfectly matchable node sets

of a graph G, the perfectly matchable subgraph polytope (PMS polytope) of G.

The identification of the perfectly matchable node sets of a graph G
would of course become much easier if the PMS polytope of G could be linearly
described, i.e., if one had a system of linear inequalities whose basic solu-
tions are precisely the extreme points of the PMS polytope of G. The existence
of such a linear system follows from the by now classical result that the
convex hull of a finite set of points in R™ 1s the intersection of a finite
number of halfspaces in Rn, i.e., the solution set of a finite system of
linear inequalities in n variables. But the identification of such a linear
system defining a polytope given by the set of its extreme points (that are
either explicitly listed or specified by some definition, like here) is
usually a hard task, which has so far been solved only for a few cases, In
this paper we give such a linear characterization of the PMS polytope of
a bipartite graph., The case of a general graph will be addressed in another
paper.

The question examined here arose in the context of a real world

problem that had to do with the optimal scheduling of drivers for a municipal
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bus company. This particular application, which gave the initial motiva-
tion for our research, is described in section 2 of the paper. Section 3
introduces the system of linear inequalities defining the PMS polytope of
a b.partite graph and gives a first proof of the validity of this linear
characterization, based on linear programming duality theory. Section 4
gives an alternative proof, using 2 projection technique that is of interest
in itself, since it may serve as a proof method in situations analogous to,
but different from, the one examined here. Finally, section 5 gives a third
proof, based on the theory of lattice polyhedra.

Section 6 of the paper focuses on the question of redundancy in the
system introduced in section 3, and gives a complete characterization of
the facets of the PMS polytope of a bipartite graph.

2. Motivation: A Bus Driver Scheduling Problem

The following problem was brought to our attention by Mr, A, foes
of the Operations Research group of Nederlandse Spoorwegen, the Dutch
Railway Company.

A municipal bus company had to schedule the tours of duty of its
drivers, so as to cover a daily set of trips to be executed. A set covering

approach was used, {.e., the problem was formulated as
min{cx|Ax > e, x ¢ {0,1}"},

where A i{s anm X n 0-1 matrix whose jth column represents & potential
daily (tour of) duty for a driver, with aij = 1 if duty j covers trip i,
is the cost of duty j, and e = (1,...,1). In

a,, = 0 otherwise, while ¢

ij 3
a typical case the matrix A had about 150-200 rows and 3000-4000 columns,
However, the way the columns of A, i.e., the potential duties, were

generated, suggested another approach., Initially, a set of "early parts'




(morning half-tours) and ''late parts" (afternoon half-tours) of duty were generated
independently of each other, then all the compatible early part-late part

pairs were explicitly generated as potential full day duties., The number

of early parts and late parts was typically about 150 and 200 respectively,

and the 3-4000 columns of A arose from the fact that only 10-13% of the

30,000 pairs were compatible (because of starting and ending properties in

space and time). If the number of early parts and late pérts is n, and n

1 2°
respectively, and the ratio of compatible early part-late part pairs to all

such pairs is r, then n = r X ny X ny; i.e., n is usually much larger than

n1 + nz.
Now let A1 = (11 ) and A2 = (az ) bem X n, and m X n, matrices
i} ij 1 2 ’

respectively, defined by

1 if early part j covers trip {

1 _

1 0 otherwise
F and
E 2 1 if late part j covers trip {
i 83 "

0 otherwise,

and let c1 and c2 be the cost vectors of early parts and late parts,

respectively. Further, let G = (VlLJVZ, E) be the bipartite graph whose
[ . node sets V1 and V2 correspond to the early parts and the late parts,
respectively, and whose edges correspond to compatible early part-late

part pairs. Then the above problem can be reformulated as follows:

. n n
# (1) Find x €{0,1) ! and x° €{0,1} 2 to .
i}
1
2.1 minimize clx1 + czx2 '
subject to
11 2.2

[ 2.2) A'X  +A'x >e




————— )

and

2.3) (xl, xz) is the incidence vector of some S CVI lJV2 such that

< S > has a perfect matching.

(1i) Find 8 minimum-weight perfect matching in the graph < S >
with edge-weights

~

cij = cj_ + cj: (i,j)eﬁ.

*
Here, as before, < S > denotes the subgraph of G induced by
the node set S.

Problem (1i) is of course polynomially solvable; whereas problem (1)

replaces the original 3-4000 variable set covering problem by & 350-variable

set covering problem with side condition (2.3).

The solvability of the problem thus hinges on whether one can con-

veniently represent condition (2.3).

3. A Linear Characterization of the PMS Polytope

Let G = (VIUVZ’ E) be a bipartite graph with parts V1 and Vz, i.e.,

with node set V = VIUV2 and edge set E such that every ec¢E joins some node

of Vl to some node of Vz.

Let 71(G) be the family of perfectly matchable node sets of G, {.e.,

M(@G) = {SSV|< S > has a perfect matching].

For any ScV, the incidence vector (characteristic vector) of S is

x c{O,l}'Vl such that X, =1, jeS, x; = 0, jeV\S. Let X(G) be the set of

incidence vectors of members of 7(G), and for atiy get T, let conv T denote

the convex hull of T.

Qur objective in this section is to give a linear system of inequali-

ties defining conv X(G), i.e., the PMS polytope of G.
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Whenever it is not confusing, we will write 7 for M(G) and X for Z(G).
Many problems involving matchings, in particular in bipartite graphs,
can be shown to be special cases of certain matroid problems. For instance,

1{f G = (VIUVZ, E) is the bipartite graph introduced above and for k = 1, 2,
Jk is the family of those edge sets that meet every node in V, at most

once, then the system Mk = (E, Jk) is a matroid; and the intersection of
the two matroids M, and M, is the independence system (E, Jl ﬂJz), where
JIHJZ is simply the family of all (not necessarily perfect) matchings
in G. The matching polytope of G is then the convex hull of incidence
vectors of all members of JlﬂJZ.

Another example, more closely related to our problem is the following.
In an arbitrary graph B with node set N, let J be the family of those sub-
sets of N covered by some matching. Then the system (N, 4), as shown by
Edmonds and Fulkerson [4], is a matroid.

In such cages as the above, results on matroid polyhedra due to
Edmonds [2, 3] lead to linear characterizations of the type that we are
interested in. However, these results are not applicable to our case, since
the PMS polyhedron of a graph (bipartite or not) does not have a matroidal
structure. To see this, it is sufficient to recall the fact that every
S ¢M(G) is of even cardinality.

We now briefly state our notational conventions, An edge joining
nodes £ and j is denoted ({,ij). For S, T<V, the set of edges joining nodes
in S to nodes in T is denoted (S,T). For SCV, [(S) denotes the set of
nodes adjacent to some node f{n S, Clearly, if Ss:vl, then I(S) CVZ and
vice versa. For the sake of brevity, we write [(1) for T'({1}).

For any x cm‘v‘ and any S&V, we let x(8) = ):(xi:icS).




Next we state the linear system defining the PMS polytope of G, i.e.,

the convex hull of X.

Theorem 3.1. Let P be the convex polytope consisting of those

b4 emm satisfying

(3.1) 0<x <1, 1eV
i (3.2) x(V)) = x(V,) = 0 .

i and

p i
; (3.3) x(8) - x(I'(S)) <O, ¥5CV..

Then P = coav X.

Proof. It is easy to see that conv XS P. For let x be any vertex
of conv X; then x is the incidence vector of some T ¢7], hence (3.1) holds
trivially. Further, (3.2) is the requirement that |T F\VI\ = |T ﬂvz\, and

(3.3) simply states that for any SCV., T must contain at least as many

1,
nodes of I'(S) as of S. Both of these requirements are readily seen to be
necessary conditions for < T > to have a perfect matching, and together they

constitute the "easy" part of the well-known KYnig-Hall theorem [11], [6].

To prove the converse, namely that PSconv X, we will show that
every vertex of P belongs to X. This will be done by showing that for
any vector c = (ci:iGV) of real node costs there is an optimal solution x*

to the linear program
(L) max{cx|x ¢ P},

such that x* ¢ X, Since every vertex of P is the unique optimal solution

to such a linear program for some ¢, this will give the result.
. We define a vector ¢ = (zij:(i,j)eE) of edge costs by letting ?ij =c, + ¢y
for all (i,j)¢E. For any matching MSE, 1f S is the set of nodes covered

by M, then M is a perfect matching in < S >, and
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(3.4, Z(Z'ij: (1,9)eM) = E(c :1eS).

Conversely, for any S ¢ and any perfect matching M in < § >, M is also
a matchiug in G, and (3.4) holds. Therefore the problem of maximizing cx

over x ¢ X can be solved by finding & maximum-weight matching (in terms of

the edge-weights ¢) in G.

Let M* be such a matching, and let x* be the incidence vector of the

node set S* covered by M¥, We will show that x* is an optimal solution to
the linear program (L), by constructing a feasible solution to the dual of
(L) having the same objective function value as (L).

Since edge-variables are two-indexed, we amend our notational con-

ventions by writing, for S, TeV, u(S,T) = L(u,, :ieS, jeT), and u(i,T) = u({i}, T),

. 1y
i u(s:j) = u(s,{j}).
‘{.
g, The graph G being bipartite, the incidence vector u* of the matching
Ag!'
% M* is an optimal solution to the linear program
‘ ~
3 max cu
1 (6 u(d,vy) <1 iev,
u(Vl,j) <1 j€V2
uz>90
whose dual {is
min t(Vl) + t(Vz)
(0,) € + ey > Sy (1,5)¢E

t >0

Let t* be an optimal solution to (Dl)' By linear programming

duality,




(3.5 EE(,am = ex(V)) + ex(v).

We now write down the linear program (D), dual to (L):

win y(V,) + y(VZ)

(3.6)

s + Z(zs:S:Vl, ieS) 2¢ 1V,
3.7 yJ. - E(zs:S t;vl, je I'(S)) > ° jev,
(3.8) Yis Yy >0, 16V, Jev,
(3.9 z

s >0, S S- Vys zvl unconstrained.

= ¢tk = % . =
Now let y; ti for 1eV1, 73 tj for jcVz, and zZg 0 for all ScvV._.

1
Then (3.8) - (3.9) are satisfied, and

(3.10) Y*(Vl) + y*(Vz) = t*(Vl) + t*(Vz)

= Z(Zij:(i,j)eu*) = cx¥,

Next we will describe a procedure for redefining the value of 2g for

certain subsets § :Vl in such a way as to satisfy (3.6)-(3.7), without changing

the value of any yt Therefore, the vector (y*, z) obtained in this way will

be the optimal solution to (D) required for the completion of our proof.

At all stages of the procedure, the vector (y*, z) will satisfy the

following two symmetric properties:

(3.11) 1f for some i.cV1

y'; + Z(zs:S CVl, ieS) = e, - ¢ for some ¢ > 0,

WP _
et e A A
ons s




then for every jel' (i),

y'; - z(zs:s;vl, jeT(8)) > ¢, + e,
(3.12) If for some jev,

y'g - E(zs:S AP jel(s)) € for some ¢ > 0,

[
0
]

then for every iel(j),

. >
y'_; + Z(zs.s:vl, ies) > ¢y + €.

These conditions state that if the current solution violates the
inequality associated with some node by an amount ¢, there is a surplus

of at least ¢ at every adjacent node. By the initial definition of (y*, z)

and in view of the inequalities tf + t¥ > 'Eij, conditions (3.11)-(3.12)
are satisfied initially.

Define

S, = {uvlyy; + E(zg:S SV, 1685) < ci},
T, = {jevzlysjr - I(zg:SSV,, §el(8)) < cj}.

Note that by (3.11) and (3.12), no i.eSo and jeTo are adjacent.

If at any stage of the procedure §,=T, = p, then (3.6) and (3.7)
are satisfied and we are done. 1If So # @, let s = 0 and perform Reduction 1.
If So = @ but T, ¥ P, let t = 0 and perform Reduction 2.

Reduction 1. Let

ieS)

¢ = min ey - y; - E(zS:SCV
icss

1!
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and define zg = ¢e(> 0). Then (3.11) and (3.12) are still satisfied
s

(since (3.11) was satisfied before), but the set

Sge1 = {1:V11y;\: + L(zg:5SV

ot ieS) < ci}

1!

is a proper subset of Ss.

1f Ss+ = @, Reduction 1 is complete; otherwise set s — s + 1 and

1
repeat Reduction 1.
Reduction 2. Let
¢ = min cj - y'j’ + Z(zs:S :Vl, jel'(8)).
jeTt

Then ¢ > 0. Define z, =z, - ¢, 5; = Vi\F(Tt), and zz = zz + ¢. Note
1 1 t t

that the effect of this change is to decrease cj - yg + Z(zS:Ss:Vl, jel'(8))
by ¢ for jeTt and to leave it unchanged for jeVZ\Tt, and also to decrease
y? + E(zS:Ss:Vl, ies) - ¢ by ¢ for ic¢ (Tt) but to leave it unchanged for
ieVl\F(Tt).

Conditions (3.11) and (3.12) still hold (since (3.12) was satisfied

before), and the new z_, still satisfy (3.9); but the set

S

T,y = {jevz‘y—; - Z(zs:S <V, jel'(8)) < Cj}

is a proper subset of Tt’

If Tt+ = f, Reduction 2 is complete; otherwise set t —~ t + 1 and

1
repeat Reduction 2.

After at most |S_| < |V,| iterations of Reduction 1 snd at most
lTol £ \Vzl iterations of Reduction 2 we obtain a vector (y*, 2) satisfying

(3.6)~(3.9), and thus the proof of the theorem is complete.”

At this point some remarks are in order.
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First, there is a certain lack of symmetry in the linear system
(3.1)-(3.3) defining conv X, in that it contains inequalities only for sub-

1’ but not for subsets T of V2. The analogous inequalities for

subsets of V2 would be

sets S of V

(3.13)  x(D - x(I(T) <0, ¥ TCV,.

These are clearly valid and could have been included in the system, but
they can also be derived from (3.1)-(3.3). For if 'l‘c:V2 and we define
s = VI\I‘(T), then T(S) :VZ\T; and by subtracting (3.2) from the inequality
x(8) - x(I(s)) < 0, we obtain x(Vz\l‘(S)) - x(I(T)) < 0. But since
I'(s) :vz\r implies T:vz\r(S), and since x > 0, this last inequality
implies x(T) - x(I(T)) < 0.

If we had included the inequalities (3.13) in our system defining
conv X, then Reductions 1 and 2 could have been mwade completely symmetric
by uvsing the new dual variables that would have been introduced.

Second, suppose SSV. is such that the graph < SUT(S) > is dis-

1
connected, with components < SkUr(Sk) > k=1,...,9. Then the inequality

x(S) = x(T(S)) < 0 is the sum of the q inequalities x(S,) - x(I(5.)) <0,
k=1,...,9, hence redundant. Now suppose < SUT(S) > is connected and K is the
node set of the component of G containing < SUI'(S) >, with Ki = Kﬂvi, i=1,2,
but the graph < (KI\S) U (KZ\I‘(S)) > is disconnected, with components < 'l?k >,
k=1,...,9. Let Tl: = 'rknvi, i =1,2, Then fork=1,...,q, we have
F(T‘I‘US) CT‘;UF(S), or else removing the node set SUI(S) from G would not

make <TI{UT
k
1

> a maximal connected subgraph. Also, I'(Tl{US) ZTIZ(UI'(S), or ‘

else < T,UT

NE N

> would not be connected. Thus we conclude that I"(T:US) = T‘;UI‘(S).
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But then adding the q inequalities x(T‘l‘US) -x(r(T‘I‘US)) <0, k=1,...,q,
and subtracting (q - 1) times the equation (3.2), yields the inequality
x(S8) - x(T'(S)) £ 0, which is therefore redundant,

We have thus shown than Theorem 3.1 remains true if (3.3) is replaced
by

x(8) - x(T'(S8)) < 0 for all SCV, such that the graphs

1
(3.39 < SUT(S) > and <(K1\S) U (KZ\I"(S)> are connected, where < K > is

the component of G containing < SUI(S) >, and I(i = KFVi, i=1,2.

Third, note that if c is integer valued, then so is Z, and thus t*
can be chosen to be integer valued. Then each iteration of Reduction 1 or
2 will result in integer ¢ and hence in integer valued (y*, z). Thus for
any integer valued c, the linear program (D), dual to (L), has integer
optimal solutions. Thus our linear system definin; the PMS polytope of
a bipartite graph is totally dual integral. (This concept was introduced
by Hoifman [9] and used extensively by Edmonds and Giles [5]. See also
Schrijver [12].)

Fourth, {f we set ¢, = 1 for all 1:V1 and ¢, = 0 for all jcvz, then

h|
the value of (an optimal solution to) (L), and hence of (D), is the cardi-
nality of a maximum matching in G. Now suppose G has no matching that covers

all ieV; then if (y*, 2z*) is an optimal integer solution of (D),

Y*V)) + y*(V,) (= max{cx|x ¢ P}) < \vll.

Since each y{ is a nonnegative integer, this implies that y; =0

for some ieVI. But since (y*, z*) must satisfy (3.6), there must be some

Ss:v1 such that zg > 0. Now suppose the optimal solution (y*, z*) {s
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chosen such that the number of positive components of 2* is minimum, and
let SSV, be such that z¥ > 0. Then Is| > |T(8)|; for if not, then

by adding zé’ to yﬂ{ for 1eS, subtracting zg from y’j\‘ for jel'(S), and then

setting zg £ 0, we could obtain a new optimal solution to (D) with fewer

positive components of z, a contradiction. Thus we obtain the hard part of
the Knig-Hall Theorem, namely that if G = (V1 UVZ’ E) has no matching that
covers all of V,, then there exists SCV; such that |s| > | 1(s)|. Furthermore,
this last result combined with our second remark gives a strengthened version
of the hard part of the Kbnig-Hall Theorem: for G such that ]Vll = [Vzl to
have a perfect matching, it is sufficient that the condition |S| < |['(S)| be

satisfied for every S<V, such that < SUT(S) > and <(K1\5) U (Kz\r‘(S))> are

1
connected, where K i{s the node set of the component of G containing < SUT(S) >,

and Ki = KﬂVi, i=1,2,

Fifth, any optimal solution (y*, z*) to (D) can be seen to have the
following property. There exists & nested sequence of sets § # UnCUn-IC"'

c UICUOCVI, such that for any SCVI, zg >0 if and only S = Ui for some
i¢{0,...,n}. This is so because if we did s iterations of Reduction 1,

we will have defined sets P # SsCS e &8 CSO. If we did t iterations

s-lC 1

of Reduction 2, we will have defined sets §°:§1 c...€5..

¢ Further, from

(3.11) and (3.12), soggo' Combining these sequences gives the claimed
sequence (Ui:i = 0,1,...,n).

Finally, we have shown that for any optimal solution t* to the
node covering problem (Dl)’ there is an optimal solution (y*, z*) to (D)
for which y* = t*, Of course the converse is also true: if (y*, z*) {s
an optimal solution to (D), then setting t* = y* gives an optimal solu-

tion to the node covering problem (Dl).
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4, An Alternative Derivation via Projection

In this section we give an alternative derivation of the linear system
defining the PMS polyhedron of & bipartite graph, based on a polyhedral
interpretation of Benders's partitioning theorem [1]. This approach is of
more general interest than its particular use in this paper, since it provides
a technique for projecting a polyhedron inIRF, or some (not necessarily
polyhedral) subset of a polyhedron in ]Rn, into some specified subspace of r". -

To be specific, let Q be an arbitrary subset ofima, and let
z = {(ux)eR"YAu + Bx <b, u>0, x ¢ Q}

where A, Band barem X p, m X q, and m X 1 matrices, respectively, such
that Z # §. The projection of Z into the subspace of the x-variables is

defined as
X = {x ¢ R9|there exists uc¢ RP such that (u,x)ez}.

We are interested in describing the set X in a way similar to Z, f{.e., by
a set of linear inequalities plus, of course, the condition x ¢ Q. The
following theorem accomplishes this,

Before stating the result, we recall that a polvhedral cone C is the

intersection of a finite number of halfspaces through the origin, and a

pointed cone is one of which the origin is an extreme point. A ray of a
cone C is the set R(y) of all nonnegative multiples of some yeC, called
the direction (vector) of R(y). A vector yeC is extreme, if for any yl,
yzec, y= -;-(y1 + yz) implies yl, ych(y). A ray R(y) is extreme if its

direction vector y is extreme. A pointed polyhedral cone has a finite

number of extreme rays, and is the conical hull of its extreme rays.

Of course, for every nonzero x ¢ R(y), we have R(x) = R(y) and consequently

every cone that contains more than the origin has an infinite number of
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extreme direction vectors. However the smallest set of vectors of which
a cone is the conical hull, consists of one direction vector from each
extreme ray.

For a cone C we let extr C denote such a (finite) set of extreme
direction vectors. Note that »<tr C is uniquely determined up to positive
multiples.

Theorem 4.1, Let Z and X be defined as above, and let
W= {veR |vA >0, v >0}.
Then
X = {x ¢RI (vB)x < vb, ¥ ve extr W; x ¢ Q.

Proof. The polyhedral cone W is a subset of‘B:, hence pointed.
Therefore W is the conical hull of its extreme rays, and any x ¢ RY satisfies
the inequality (vB)x < vb for every extreme direction v of W, i and only
if it satisfies it for all veW.

Now let ; € X; then x ¢ Q and there exists ue RP such that u >0
and Au + Bx £ b. Further, let v¢W; then vB;'S vb - vAu < vb, since ;_2 0 and
vA >0 imply vAu > 0. Thus (vB)x < vb, ¥ ve¢ extr W.

Conversely, suppose X ¢ R? satisfies x ¢ Q and (vB)x < vb, ¥ ve extr W,
Then there exists no ve¢ IR~ such that vA >0, v>0 and v(b - Bx) < 0.
Therefore, from Farkas's well known Lemma, there exists some u¢ RP
such that & > 0 and AG < b - BX. But then % ¢ X.||

Note that, if W = {0} (like for instance in the case when A < 0), then

X = {x ¢ RYx ¢Q].

We now turn to our problem of giving a linear characterization of

the PMS polytope of a bipartite graph G. Although we are looking for a




linear system in terms of the variables X, associated with the nodes of G,
we will start with the much easier task of giving a linear character-
ization in terms of variables associated with both nodes and edges, Such
a linear system of course defines a polyhedron in a higher dimensional
space than the one that we are looking for, however by projecting this
polyhedron into the space of the node variables we will obtain the system
of Theorem 3.1. “
Recall that the PMS polytope of G is conv X, where X is the set of
incidence vectors of perfectly matchable node sets of G. Let, as before,

a variable X be associated with node i of G, and let a variable u,,6 be

1}

associated with edge (i,j) of G. As in section 3, we write u(S,T) = 2(uij:1c5, jeT),
u(1,T) = u({1},T), and u(s,3) = u(s,{1]).

It is not hard to see that a 0-1 vector x chV‘ is the incidence

vector of some perfectly matchable node set of G if and only if there exists

some integer ué¢ JR‘E‘, such that

u{d,T@)) - x, =0 iev

{ 1
4.1 uw@,P - x =0 jev,
uij 20, (1,3)sE.

Furthermore, since the coefficient matrix of (4.1) is totally
unimodular, the integrality condition on u can be omitted, and the 0-1

condition on x can be replaced by

(4.2)

0<x <1, iev.

Thus (4.1) and (4.2) provide a linear characterization of conv

in terms of node and edge variables. One way of obtaining a linear char-

acterization in terms of the node variables only, is then to project

the polyhedron defined by (4.1), (4.2) into the subspace of the node variables.
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To this end, we first rewrite (4.1)-(4.2) as a system of linear

inequalities. This can be done in several ways, and we choose to (r) change

the sign of the equations jch; (B) replace all equations by inequalities

of the form <; and (Yy) add all the inequalities thereby obtained for 1cV1

and jcVz, and change the direction of the resulting inequality. This yields

the system
-ul,I(1)) +x, <0 iev, -
u((3),3 - Xy < 0 jev,
(4.3) -x(Vl) + x(Vz) <0
{ vy 20 (1,§) ¢
3 0<x <1 iev

which is equivalent to (4.1)-(4.2). Note that the ccefficient matrix of
(4.3) is still totally unimodular.

We now apply Theorem 4.1 to this system. The set Q and the matrices

A, B and b that define 2 of Theorem 4.1 are in this case as follows:

Q= {x emM\ - x(V)) + x(V,) <0, 0<x, <1, ieV];

A is the node-edge incidence matrix of G, with the signs of the

rows indexed by V. changed;

1
B is a diagonal matrix of order iVl, with +1 for the diagonal entries
indexed by Vl, and -1 for those indexed by V,; and, finally,
b is the 0 vector with |V| components.

Now the cone W of Theorem 4.1 is

. vemM vy tvy2 0, 1eVy, jeV,, (1,5)¢E

v, 20, iev
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and in order to project the polyhedron defined by (4.3) into the subspace
of the node varisbles, we have to charascterize the extreme rays of W.

Theorem 4.2. The vector veW is extreme if and only if there exists

a > 0 such rhat either

@ for exactly one i = j_ eV

2
(4.4) v =
0 for all ieV, UV,\{j,]
or
@ ies U I(S)
(4.5) vy =
0 otherwise

for some S<V. such that < SUTI(S) > is connected.

1
Proof. Sufficiency. Let veW be of the form (4.4), and assume for

the sake of contradiction that v is not extreme, {i.e.,, v = %—(vl + vz) for

some vl,vzeW\R(v). Then vi = vi =0, % 1cv1 UVZ\{j*}, and vl,vch(v). Thus

v is extreme,.

Now let veW be of the form (4.5), and again assume that v = %(v]L + v2)

for some vl,vzeW. Then vi = vi = 0 for ie(Vl\S) v (VZ\I"(S)), and
1 2 -
(4.6) A + vi = 2a, 1eSUI(S).
Note that from (4.6), for any ieS, jel(S), vi > v; if and only if
vf < vi; but the constraints of W imply v: < v;‘, k = 1,2, for any such pair

i,j. Hence vlz

is connected, it follows that vl; = v‘; = ak(constant), k = 1,2, for all

1,468\ I'(3). Therefore vl, vzeR(v), i.e., v is extreme.

= vl;, k = 1,2, for all pairs i¢S, j&¢I(S); and since < SU i(S) >

Necessity. Let v be an extreme vector of W, and let T = {1cV|vi > 0].

Define § = :mvl, and consider first the case where S = §, Then if

e emm - --«,_____,h.——--.l—"—" ) : ’ ) y N 'v 3 . sidnedsare A
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T= {jl,...,jt] with t > 1, and if ej denotes the unit vector ianvl with 1

in position j, we have

v=yv.,e, + ,,.+tv, e
iy h PR 8

1
= E(v1 + vz),

1

where v = v2 = 2(v ), with vl, vzew, and vl.‘,R(v),

2v, e, , e + ... +v, e
) o i 4 3, 3, I 3,
v AR (v). Thus if \T] > 1, v is not extreme, contrary to the assumption. We

conclude that if S = @, then |T| = 1 and thus v is of the form (4.4).
Now consider the case when S # §. Then [(S)CT ﬂvz, or else there

exists 1¢S, jel'(S) such that vy >0, v, =0, 1i.e., v violates some constraint

3

of W. Also, I(S)=2T ’\.Vz, or else there exists joeVZ\F(S) such that vj > 0.
o

But then for any ¢ satisfying O < ¢ < vj , the vectors v1 and vz, obtained
o
from v by replacing v, with v1 = v, + ¢ and v2 =v, =~ &, respectively,

jo jo jo jo jo
1
satisfy the equation v = -‘,]2-(\71 + vz), although v ,v2¢W\R(v), contrary to the
assumption that v is extreme. We therefore have ['(S) = Tﬂvz, f.e., T =s8UT(S).
We claim that < T > is connected. For suppose not, and let K be the

node set of a component of < T >, Then v = %(v1 + vz), where

1 0 ieK
Vi’
v uvluvz\x
and
2 2v1 i¢X
V:L'=

vy 1cV1 U VZ\K,

1 .2
while at the same time v ,v eW\R(V), contrary to the assumption that v is

extreme. Thus < T > = < SUT(S) > is connected.

Finally, we claim that v, = a i¢T, for some constant o > 0. For

suppose not; then again v = %(vl + vz), with v1 and v2 defined by




T T nmtete—
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min{v,:jeT} ieT
v, = J
i N
0 ieVl UV2 T
and
2. 2v, - min{vj:jeT] ieT
i
] iev, UVZ\T
while vl,vzeW\R(v), contrary to the assumption that v is extreme. -

This proves that if S # @, then v is of the form (4.5).]|
Having described the extreme rays of W, we can now apply Theorem 4.1
to the system (4.3). The extreme direction vectors of the form (4.4) give

rise to inequalities x, > 0, 1ev2, which are redundant (since thev are part

i
of the definition of Q). The extreme vectors of the form (4.5) give rise
to an inequality x¢(S) - x(T(S)) < O for every S;V1 such that < SUT(S) >
is comnected.

I1f G {s connected, then the inequality x(Vl) - x(Vz) < 0, which can
also be written as x(Vl) - x(T(Vl)) < 0, obtained from the extreme vector

of W that corresponds to S = V., together with the inequality - x(Vl) + x(Vz) <0

1
of (4.3), gives rise to the equation x(Vl) - x(Vz) = 0. If G is disconnected
with components < K1 D geeey < Kt >, where Ki = SilJF(Si), i=1,...,t, then
the equation x(V,) - x(V,) = O is obtained by first adding the inequalities
x(Si) - x(F(Si)) <0,1i=1,...,t, and then combining the resulting inequality,
x(Vl) - x(Vz) £ 0, with the inequality - x(Vl) + x(Vz) < 0 of (4.3).

Thus applying Theorem 4.1 to the system (4.3), we obtain the linear

characterization of the PMS polytope of G given in Theorem 3.1, except for

those inequalities (3.3) such that < SU I(S) > is disconnected, which are

i
missing. But these inequalities are redundant, as shown in the remarks !
|
following Theorem 3.1, where the system (3.3) was replaced by (3.3). {
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5. A Third Derivation via Lattice Polyhedra

Lattice polyhedra were introduced by Hoffman and Schwartz [10]
(see also [7], [8]) as a class of integer polyhedra that generalizes both
matroid polyhedra and bipartite matching polyhedra. We will show that the
PMS polytope of a bipartite graph can also be expressed in this form.
A lattice £ is a partially ordered set closed under two associative
and commutative binary operations, A and V, and such that =

for a,beL, a Ab<a,b<aVhb;

] (5.1)
" a<b= a=a b, b=aVh,
To define a lattice polyhedron, we further need a set { and a
4 : mapping f:£ — 2u that satisfies for every Wl, WZ, ws e,
'3
j . (5.2) Wl 5w2 SWS implies f(wl) n f(w3) < f(wz)
(5.3) f(WI) ﬂf(Wz) Cf(wl \' Wz) ﬂf(wl A Wz)
| (5.4) f(Wl)Uf(Wz)Cf(Wl VWZ)Uf(Wl /\WZ).

and a submodular function r:#£ = Z+ (the set of nonnegative integers). The
;1 basic result on lattice polyhedra [10] can then be stated as follows.
2 D)
Theorem 5.1. For any nonnegative integer de¢ R‘“(\, the convex poly-

»
hedron whose points are those x c]l.?.“'(I satisfying

T Y

(5.5) 0<x<d
and
(5.6) L(x :1ef(W) < r(W), ¥Wed,

has only integer vertices. Moreover, the linear system (5.5), (5.6) is

totally dual integral.

T

e
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To apply this theorem to our case, we let # be the collection of all
w:v2 ordered by set inclusion, and we define the operations v and A to
be U and N, respectively. Then 2 is well known to be a lattice. We let
U = V, the node set of G.
For We we define £(W) = SUW, where S = I"-I(W) is the maximsal 1
subset of V1 such that I'(S) =W, Equivalently, S consists of all those
nodes of V1 adjacent only to nodes in W. =
Now for Wi e, i = 1,2,3, condition (5.2) requires that WICWZCW3
imply

(W, US)) N (W, USy) & (W, US,y),

1
vhere §, = Ir (W), 1 = 1,2,3. Since W, CW,CW, implies §,CS5,CS,, this

condition is satisfied.

Further, for Wi ¢, 1 = 1,2, (5.3) requires that

-1
(W, US)) N (W, US,) SW, W, UT ™ (W, NW,),

vhere, again, si=r‘1(wi), 1=1,2. Since (W,US;)N (W,US,) = (W N¥,) UGS, Ns,),
and since it is easily checked that S1 ﬂSz = T-]'(W1 nwz), this requirement

is also satisfied,
Finally, for Wi ¢L, 1 = 1,2, (5.4) requires that
-1
wlusluwzuszcwluwzur (WIUWZ),
Since SlUS2 c r-l(WIUWZ), this condition is also satisfied.

Next, we have to choose a nonnegative integer function r on #, that

is submodular. For We¢£, we define r(W) = ‘W‘, which clearly satisfies

this requirement (and is in fact modular),




We can now apply Theorem 5.1 to derive our linear characterization
of the PMS polyhedron of a bipartite graph. To this end, we set di =1,

ieV, in (5.5), and use the above definitions to rewrite (5.6) as

(5.6  xTlon) + xan < W, ¥ wWev,.

If we now complement the variables X ieVz, i.e., define new

x/=1- x,, 1€V,, then the system (5.5), (5.6")

/
variables x, = X ich, 1

i

becomes

(5.7 0<x

: i’g 1, ieV

5.8  x'cryy -x') <0 wuevy,

and Theorem 5.1 asserts that the convex polytope P* defined by (5.7), (5.8)
has integer vertices.

The linear system of Theorem 3.1 differs from the above in three

; respects., First, there is an inequality (5.8) for every WCVZ, not just
those for which W = I'(S) for some S CVl. Suppose that W # ['(S) for any
S:V1 and let W' = I"(1"°1(W)). Then W/'CW and the inequality (5.8) for w'

is x'(r-l(w)) - x’W’) <0, which together with (5.7) implies the inequality
(5.8) for W, Hence all such inequalities can be drupped without affecting
the integrality of the polytope.

Second, (5.8) does not contain the inequalities (3.3) corresponding

1 to sets SCVI such that ['(S) = I['(T) for some proper superset ‘I‘CV1 of S.

But 1f such T exists, then the graph < (KI\S) U (KZ\T(S)) > is disconnected,
where < K > 1s the component of G containing § and T, and I(i = Kﬂvi, i=1,2,

This is so because the nodes in T\S # # are not adjacent to any node in

KZ\I‘(S) = KZ\T(T). As discussed in the remarks following Theorem 3.1,

the inequalities (3.3) corresponding to such sets SCV, are redundant.
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Third, the equation (3.2) is not present in the system (5.7), (5.8).
This is a genuine difference between the two polytopes, P defined by the

system (3.1)-(3.3), and P* defined by (5.7), (5.8). However, the equation
(3.2) defines a face of P*, and since the vertices of a face are vertices

of the polyhedron, it follows that P also has integer vertices. This provides

the third proof of the fact that P = conv X.

6. Facets of the FMS Polytope -

In this section we address the question as to which of the inequalities
defining the PMS polytope of a bipartite graph are essential. This is
obviously a matter of practical interest, as the number of inequalities in
the system (3.3) is rather large.

The facets of a polyhedron P are its maximal (relative to inclusion) non-

S AMECL MO A

empty proper faces, If dim P {s the dimension of P, then the dimension of a facet
of Pis dim P - 1. An ipnequality ox < o, is called facet-inducing (for P), A
if it is satisfied by all x ¢ P, and the polyhedron Pr\{xlax = a°} is a p
facet of P, i.e., has dimension dim P - 1.

In the remarks following Theorem 3.1, we have pointed out that some
of the inequalities defining the PMS polytope of G are redundant, and that
the system (3.1), (3.2), (3.3) can in fact be replaced by the smaller system
(3.1), (3.2) and (3.3’). 1n this section we show that most of the inequalities

of the latter system are essential, i.e.,, facet~-inducing.

First, we have to determine the dimension of our polytope. Let again
P denote the set of x e]R‘vl satisfying (3.1)-(3.3), shown in Theorem 3.1
to be the PMS polytope of G = (VllJVZ, E).

The equality set of the system (3.1)-(3.3) is the set of those
members that are satisfied with equality by all x ¢ P. A basis of the
equality set is a maximal subset whose coefficient matrix is of full row

rank.
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For any graph G, we define G, the set of adjacency vectors of G, to

be the set of all incidence vectors of pairs of nodes which are joined by
an edge. Thus G has as many elements as G has edges, and each x € G has
exactly two components équal to 1 and all other components equal to 0. The

following Lemma will be useful in the rest of this section.

Lemma 6.1. Let F be the set of adjacency vectors of a forest
F = (V,E) with k components. Then F is linearly independent, |F| = |V| - Kk, -
and every x ¢ T satisfies x(Kl) = x(KZ) for every component (tree) < K >

of F, where K, and Kz are the parts of K.

1
Proof. Elementary.”
Theorem 6.2. Let ¥ be the set of components of G = (VllJvz, E), and

for every < K > e¥, let K1 = KfﬁVi, i = 1,2. Then the system

(6.1) x(Kl) - x(Kz) =0, ¥<K> ek,

is a basis of the equality set of (3.1)-(3.3).

Proof. It is clear that the equations (6.1) are linearly independent
and belong to the equality set of (3.1)-(3.3). Let F be an edge maximal
spanning forest of G, and T the set of its adjacency vectors. Since every
pair of adjacent nodes is perfectly matchable, Fex. By Lemms 6.1, F is
linearly independent and each x ¢ F satisfies (6.1). Since |F| = lvi - x,

vhere k = \X\, no basis of the equality set can contain more than k equations.

But k is the number of equations in (6.1), so (6.1) is a basis.
Corollary 6.3. If G = (VIIJVZ, E) has k components, dim P = \Vl -k,

Proof. The dimension of a polyhedron in R‘v‘ s |V| minus the rank

of the equality set.
We now turn to the identification of facet inducing inequalities.

The following result will be of use in this task, We recall from section 2
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the definitions of 7(G) as the collection of perfectly matchable node sets
of G, and Z(G) as the set of incidence vectors of such node sets.

Theorem 6.4. For any SCVI, the equality
(6.2) x(8) - x([(s)) =0
is satisfied by the incidence vectors of precisely those T ¢7(G) such that

(6.3) (Vl\S. T'@nHnu=9

for every perfect matching M of < T > .

Proof. Let x be the incidence vector of some T eN(G). Clearly, x
satisfies (6.2) if and only if |SNT| = |{T(S) NT|. Now if (6.3) holds for
at least one perfect matching M of < T >, then M matches the nodes of SNT
with those of I'(S) NT, hence x satisfies (6.2). On the other hand, if (6.3)
is violated by some perfect matching M' of <T >, then M’ matches the nodes
of SNT with a proper subset of the nodes of I'(S) NT, hence |SNT| < |T'(s) Nt
and (6.3) is violated by x. We conclude that (6.3) holds for at least one
perfect matching of < T > 4f and only if it holds for all perfect matchings

of < T >; and this is the case if and only if the incidence vector x of T

satisfies (6.2).]

For any S:Vl, let Gs denote the graph obtained from G by removing
the edge set (VI\S,I'(S)), i.e., let

Gs =< SUT(S) >U< (vl\s) U(VZ\I'(S)) >,

Then Theorem 6.4 fmplies
Corollary 6.5. For any Sch,

Z(©6) N {x|x(S) - x(I'(5)) = 0} = Z(Cg).
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Theorem 6.4 and Corollary 6.5 essentially say that for any S!;VI,
the polyhedron {x ¢ Plx(S) - x(T'(8)) =0} is itself a PMS polytope, namely
the one for the subgraph GS of G obtained by deleting the edges in (Vl\S,Y(S)).

We are now ready to state the main result on facets of conv X(G),

i.e., of P.

Theorem 6.6. Let ® # S g:vl. Then the inequality
(6.4)  x(S) - x(T(S)) <0

is facet inducing if and only if Gs has exactly one more component than G.
Proof. The inequality (6.4) is facet inducing, i.e., the set
Pf\{x‘x(S) - x(I'(S)) = 0} 1s a facet of P, if and only if it has dimension

d =dim P - 1. From Theorem 3.1 and Corollary 6.5,
PO {x|x(8) - x(1(s)) = 0} =

= conv X(G) N {x|x(S) - x(I'(S)) = 0} = conv (3g).

From Corollary 6.3, dim P = \Vl - k, and dim conv Z(Gs) = lVl - kS'

where k and ks denote the number of components of G and Gs, respectively.

Thus (6.4) is facet inducing if and only if ks =k + 1,
At this point there is at least one feature of Theorem 6.6 that requires

immediate comment. In the remarks following Theorem 3.1 we have stated that

any inequality (6.4) such that < SUI(S) > 1is disconnected, is redundant;

yet from Theorem 6.6, such an inequality may still be facet-inducing, pro-

vided that the graph Gs has exactly one more component than G, a condition

that {s not incompatible with < SUT(S) > being disconnected. So it seems

that some facet inducing inequalities are redundant. This is indeed the

case, due to the fact that dim P < |V|, 1i.e., that the equality set of

the system (3.1)-(3.3) is nonempty. Every one of the equalities satisfied

by all x ¢ P can be added, after multiplication with some arbitrary constant,




to any of the inequalities of (3.1)-(3.3), to yield another valid inequality.
This way infinitely many inequalities may induce the same facet of P, where-

as in any minimal linear system defining P, every facet of P is obviously
represented by only one (facet inducing) inequality. Thus we have to
address the question as to which among the facet inducing inequalities of
(3.1)-(3.3) induce distinct facets.

Before answering this question, it will be useful to restate Theorem
6.6 in the following slightly different form.

Theorem 6.6'. The inequality (6.4), where P ¥ S ¢ Vs is facet
inducing if and only if G has a unique component < K* > such that @ # S* # K¥,
where S* = SNK* and Kt = K*f\Vi, i = 1,2, and the graphs < S*{ ['(S*) >
and < (R¥\S*) U (RF\I'(S*)) > are connected.

This form of the theorem (which can easily be derived from the other
one) implies that for all components < K > of G other than < K* >, either
SNAK # @ or SNAK = V,.

Theorem 6.7. Facet inducing inequalities
(6.5) x(8) -x(T'(8)) <0
and

(6.6)  x(T) - x(C°(T)) <0
induce the same facet of P if and only if G has a component < K* > such that
6.7) f ¢ snx*-‘rnx*#x*nvl.

Proof. Since (6.5) and (6.6) are facet inducing, if G has a component

< K* > satisfying (6.7), then K* is unique, and x ¢ P satisfies (6.5) with

equality {f and only {f it satisfies (6.6) with equality, i.e., the two

inequalities induce the same facet.
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Conversely, if no such < K* > exists, then there exists ueVl’S, vel(s),

such that (u,v)e¢E and either u,veT U I(T), or u,véTU I(T). Then the adjacency i
vector of {u,v} satisfies (6.6) with equality, but (6.5) with strict
inequality; i.e., the two inequalities induce different facets.”
We now turn to the inequalities (3.1).
Theorem 6.8. The inequality x, > 0 is facet inducing if and only
if v is not a cutnode or am isolated node of G.
Proof. If v i{s neither 2 cutnode nor an isolated node of G, there
exists an edge-maximal spanning forest F of G in which v has degree 1.
Then the set F of adjacency vectors of F contains a unique X such that x, = 1.

i
{ Therefore, using Lemma 6.1, FU {O]\{X] 1s & set of dim P affinely independent i

members of P, all satisfying x = 0. Thus, denoting Q = {x ¢ Plxv = 0}, we

have dim Q > dim P - 1. On the other hand, X ¢ P\Q, hence Q is a proper face

of P; therefore dim Q = dim P ~ 1 and s0 x, 2 0 is facet inducing.
Conversely, if node v {8 isolated, then x, = 0 for every x ¢ P, and
thus x> 0 does not induce a proper face. If v is a cutnode, let L be
the node set of a component created by deleting v, and let L' = LU {v].
Then every x ¢ P such that x = 0 also satisfies x(L'f\Vl) - x(L’rﬁvz) = 0.
But let X be the incidence vector of {v,w} for any wel adjacent to v. Then
% satisfies x(L'f\VI) - x(L'(\Vz) = 0, but iv # 0. Hence the inequality
x, 2 0 does not induce a maximal proper face of P.}|
Theorew 6.9. Facet inducing inequalities x > 0 and x(5) - x(I'(S)) < 0
define the same facet of P 1f and only if {v] = K$\S and T'(v) ST(R§NS),
where K* {s the node set of the unique component of G satisfying
P ¢ SNK C;» K‘f (= KﬂVI).
Proof. If the conditions hold, then the inequality X, 20 can
be obtained from x(S) - x(I'(S}) < 0 by subtracting the equations

x(Kl) - x(Kz) = 0, where K, = Kf\Vi, { = 1,2, for all those components

i

i
l
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< K > of G such that KIFTS # 0. Therefore the two inequalities induce
the same facet., The converse can be shown by an argument analogous to the
one used to prove the necessity of Theorem 6.7, and the details are omitted.H

Theorem 6.10. The inequality x, <1 is facet inducing if and only
if v either has at least two neighbors, or belongs to a two node component
of G. In the first case, no other inequality (3.1) or (3.3) induces the
same facet. In the second case, only the inequality x, < 1, where u is
the other node of the component containing v, induces the same facet as
3 x, <1.

Proof. Sufficiency. If v has two distinct neighbors, u and w,

define x by

2 ifi=vw

1 ifi=uorw

L
[]

] 0 1f 1eV\{u,v,w}.

Then ;tP, but x satisfies all the constraints (3.1)-(3.3) except
for the inequality x, < 1. Therefore this inequality is essential, hence
facet inducing, and no other 1nequality of (3.1)-(3.3) induces the same facet.

If v belongs to a two node component, with u the other node, define

2 ifi=uorv

] if 1¢V\{u,v},

Then again X ¢ P, but X satisfies all the constraints of (3.1)-(3.3)
except for x, 2 0 and x > 0. This shows that at least one of these two
inequalities is essential. But the equation (6.1) for the component of G
containing u and v gives X, "X, for all x ¢ P; s0o x ¢ P satisfies x, = 1

if and only if it satisfies x, = 1. Therefore x < 1 and x, < 1 are both

facet inducing, and they induce the same facet,
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Necessity. If v is an isolated node, x, = 0 for all x ¢ P and the
inequality x, < 1 does not induce a nonempty face of P.

Suppose now that v has a single neighbor u, and u has a neighbor
w#v. If veV,, the inequality (3.3) for S = {v} is X, - %, 0, orx <x.
If veVz, this same inequality, though not part of (3.3), can be derived as
the inequality (3.13) for T = {v}. Therefore every x € P that satisfies

x, = 1 also satisfies X, - 1. But the converse is not true, since the

adjacency vector x of {u,w} belongs to P, while ;; =1, ;; = 0. Therefore

the inequality x, < 1 does not induce a maximal proper face of PJ
From the last four theorems it follows that the set of constraints
(3.1), (3.2), (3.3) comes very close to, though is generally not exactly,
a minimal linear system defining P. To make it minimal, one has to remove
- every inequality x, > 0 such that v is either an isolated node
or a cutnode;
- every inequality x, < 1 such that v has less than two neighbors and

does not belong to a two node component; and, finally,

- every inequality x(S) - x(I'(S)) < O such that |K{\Sl = 1 and
I’(K’{\S) :I‘(K"i NS), where K* is the unique component of G such
that @ # K*NS ¢ K,{ (= K*ﬂvl).

This still leaves & large number of inequalities, that can be
exponential in the size of G. The following example illustrates the
contents of this section and also i{s a case where the minimal defining
system for P is exponential.

Let Gn be the graph of Fig. 6.1, consisting of n pairs of nodes
[ui, vi}, each pair joined by an edge, plus & node u, adjacent to every

Vo i=1,...,n, and & node Vo adjacent to every ug, i=1,...,n0. Let

vl = {uo’ ulo---oun}o v2 - {vo’ vl”"’vn}'




Using the results of this section, we obtain the following minimal

defining system for P:

0 <x < 1, uev,

(6.14)

0<x, <1, vel,

(6.15) x(Vl) - x(Vz) =0
(6.16) x(8) - x(T'(8)) <0, = S:0#S ;vl\{uo}

(6.17) xuo - x(VZ\{vo}) < 0.

The inequalities (6.14) and the equation (6.15) are easily seen to
be needed. For any nonempty SC{ul,...,un], vocT(S), 8o < SU I(S) > is
connected; and uoevl\s, 80 < (VI\S) 8] (Vz\l'(S)) > is also connected; hence
from Theorems 6.6 and 6..7, the inequalities (6.16) all induce distinct i
facets of P. Further, since S svl\{uo} implies \VI\S] > 2, the facets
induced by these inequalities are also distinct from those induced by any
of the inequalities (6.14) (Theorem 6.9). Finally, since < {u }U(V,\{v D) >
and < (Vl\{uO]) U {vo} > are connected, inequality (6.17) defines a facet of

P, which is easily seen to be distinct from the facets induced by any of

the other inequalities.
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It remains to be shown that the omission of the rew .uing inequalities
of (3.3) is justified. If S = Vl\{uo}, then from Theorem 6.9 the inequality
(3.3) induces the same facet as L > 0. Now let uoeS.

If S = {uo}, we have the in:quality (6.17). Now let S # {u }. Then
(S) = V,, 80 < (V\S) U(V,\T(S)) > is connected if and only if lv,\8] < 1.
If |V1\S| = 0, then § = Vy and the inequality (3.3) is implied by the equa-
tion (6.15). If VI\S = {ui} for some ie{l,...,n}, then from Theorem 6.9
the inequality (3.3) induces the same facet as xui<2 0. This covers all
the cases,

Notice that the number of inequalities (6.16) for Gn is 2° - 2, hence
exponential in n.

Although the number of inequalities in our linear characterization of
the PMS polytope of a bipartite graph may be large, this characterization is
still computationally useful. Indeed, a linear program whose constraint

set includes the system (3.1)-(3.3‘) can be solved by generating the in-

equalities (3.3) as needed. However, the development of such a procedure

goes beyond the scope of this paper.
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